LEAST SQUARES METHODS WITH YULE-WALKER EQUATIONS

ullet Yule-Walker equations of the form $\left|egin{array}{c} \mathbf{R}_B \ \mathbf{R}_A \end{array} \right| \mathbf{a} = \left|egin{array}{c} \mathbf{c} \ \mathbf{0} \end{array} \right|$

are extended to
$$\begin{bmatrix} \mathbf{R}_B \\ \mathbf{R}_E \end{bmatrix} \mathbf{a} = \begin{bmatrix} \mathbf{c} \\ \mathbf{0} \end{bmatrix}$$

where

$$\mathbf{R}_{E} = \begin{bmatrix} R_{x}[Q+1] & R_{x}[Q] & \cdots & R_{x}[Q-P+1] \\ \vdots & \vdots & \ddots & \vdots \\ R_{x}[L] & R_{x}[L-1] & \cdots & R_{x}[L-P] \end{bmatrix}$$

$$L > P + Q$$

• Lower block is solved by least squares.

LEAST SQUARES YULE-WALKER

The Yule-Walker equations in theory produce

$$\mathbf{R}_E \mathbf{a} = \mathbf{0}$$

but in practice, when estimates are used for \mathbf{R}_E ,

$$R_E a = \epsilon$$

Application of least squares results in

$$(\mathbf{R}_E^{*T}\mathbf{R}_E)\mathbf{a} = \left[egin{array}{c} \mathcal{S} \\ \mathbf{0} \end{array}
ight]$$

where S is the sum of squared errors.

SUGGESTED PROCEDURE

Begin with an order higher than necessary:

$$P' > P$$
 and $Q' > Q$

Follow one of two methods:

- Find an order (P', Q') model of reduced rank.
- \bullet Find an order (P,Q) model by averaging techiques.

LS YULE-WALKER METHOD 1 (RANK P ORDER (P',Q') MODEL)

- 1. P is the "effective rank" of \mathbf{R}_E : $\left(\frac{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_P^2}{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_{P'}^2}\right)^{\frac{1}{2}} \approx 1$
- 2. With ${\bf a}=\begin{bmatrix}1\\{\bf a'}\end{bmatrix}$ and ${\bf R}_E=\begin{bmatrix}|\\{\bf r}_{\rm O}\ {\bf R}_E'\end{bmatrix}$ ${\bf a}'$ is found from ${\bf a}'=-{\bf R}_E'^+{\bf r}_{\rm O}$

where terms $1/\sigma_k$ for k > P in $\mathbf{R}_E'^+$ are set to zero.

3. MA parameters are found in the usual way.

LS YULE-WALKER METHOD 2 (ORDER (P,Q) MODEL)

1. Form submatrices with P+1 columns from \mathbf{R}_E .

Example: (P' = 2, P = 1)

$$\begin{bmatrix} R_x[3] & R_x[2] & R_x[1] \\ R_x[4] & R_x[3] & R_x[2] \\ R_x[5] & R_x[4] & R_x[3] \\ R_x[6] & R_x[5] & R_x[4] \end{bmatrix}; \mathbf{R}_{(0)} = \begin{bmatrix} R_x[3] & R_x[2] \\ R_x[4] & R_x[3] \\ R_x[5] & R_x[4] \end{bmatrix}, \mathbf{R}_{(1)} = \begin{bmatrix} R_x[2] & R_x[1] \\ R_x[3] & R_x[2] \\ R_x[4] & R_x[3] \\ R_x[6] & R_x[5] \end{bmatrix}$$

2. Solve equations of the form

$$\begin{pmatrix} \sum_{k=0}^{P'-P} \mathbf{R}_{(k)}^{*T} \mathbf{R}_{(k)} \end{pmatrix} \mathbf{a} = \begin{bmatrix} \mathcal{S} \\ \mathbf{0} \end{bmatrix}$$

APPLICATION OF METHODS TO DATA

ARMA DATA (Kay, 1988)

	a ₁	a ₂	a ₃	a ₄	b_0	b_1	<i>b</i> ₂
ARMA1	-1.352	1.338	-0.662	0.240	1.000	-0.200	0.040
ARMA3	-2.760	3.809	-2.654	0.924	1.000	-0.900	0.810

RECORDED DATA

Sound of ruler struck on book.

POLE-ZERO LOCATIONS FOR ARMA DATA

ARMA1

ARMA3

RECORDED RULER DATA

COMPLETE SEQUENCE

SHORT SEGMENT

ITERATIVE PREFILTERING: ARMA1 DATA

MODEL ORDER (P,Q) = (4,2)

ITERATIVE PREFILTERING: ARMA1 DATA

REDUCED MODEL ORDER (P,Q) = (2,2)

PRONY'S METHOD: ARMA3 DATA

MODEL ORDER (P,Q) = (6,6)

PRONY'S METHOD: ARMA3 DATA DURBIN'S METHOD USED TO FIND ZEROS

LEAST SQUARES YULE-WALKER: ARMA3

MODEL ORDER (P,Q) = (6,6)

LEAST SQUARES YULE-WALKER: ARMA3 DURBIN'S METHOD USED TO FIND ZEROS

COVARIANCE METHOD: ARMA3 DATA

AR MODEL ORDER P = 10

LEAST SQUARES YULE-WALKER: RULER DATA SHANKS' METHOD USED TO FIND ZEROS

MODEL ORDER (P,Q) = (6,16)

